演讲嘉宾-饭岛澄男(Sumio Iijima)

饭岛澄男(Sumio Iijima)
日本名古屋名城大学教授,日本学士院院士,中国科学院外籍院士
  日本国籍,纳米科学家。1939年5月出生于日本,1968年获得日本东北大学博士学位。2010年当选为日本学士院院士。2011年当选为中国科学院外籍院士。 
  饭岛澄男是高分辨电子显微学的奠基人之一;他在1991年在《自然》杂志上宣布观察到纳米碳管,由此开拓出一维纳米材料的全新研究领域,为推动纳米科技的发展作出巨大贡献,该论文单篇已被引用一万多次,居于该领域之首。 1971年,他将铌酸钛的电子显微像和其晶体结构结合起来,显示出高分辨像中一个像点对应着重金属原子柱。人们直接看到原子的美好愿望终于实现了。一门新兴的高分辨电子显微学科也因此而诞生。高分辨电子显微学的兴起不仅给固体物理、固态化学、电子学、材料学及地质矿物等物质科学带来新的活力,也为生命科学中至关重要的生物大分子结构的研究起极大的推动作用。1991年,他用电弧法制备的碳材料中观察到纳米碳管。它是由碳原子形成的石墨片层卷成的无缝、中空管体。饭岛澄男用电子显微像和电子衍射表征了纳米碳管的直径、壁层以及螺旋性,从而确定了碳物质的这一新品种。他接着在纳米碳管制备技术;打开纳米碳管封闭端头而对之实施管内充填的技术;纳米碳管的物理化学性能;其他一些物质的纳米管和纳米线都作了系统深入的研究。纳米碳管具有奇特的电学性能,被认为是纳电子学的重要候选材料;纳米碳管还有优良的发射电子、发光特性;高比强的力学性能和很好的化学吸附性及充填可能。所以纳米碳管的研究已经成为纳米科学技术的重要方向,也是凝聚物理和材料科学领域的前沿和热点。饭岛澄男的开创性工作和一直以来的活跃研究奠定了他在纳米科技方面的引领地位。饭岛澄男是中国人民的好朋友,对推动中国纳米科技、电子显微学的发展做出了重要贡献。他是文革之后最早访问中国的日本科学家之一。他在美国期间,热情指导和帮助了中国访问学者。返回日本后,与清华,北大等多个研究组合作研究和培养研究生,发表高质量研究成果。所指导中国学生已有多名成为学术带头人。他是清华大学,北京大学,西安交通大学,浙江大学的名誉教授和上海交通大学,东南大学的讲座教授。他还是中国科学院金属研究所沈阳材料科学(联合)国家实验室的国际咨询委员会的委员。
演讲题目:One-Dimensional Materials: Growth, Characterization and Use
主题会场大会报告
开始时间
结束时间
内容摘要

The discovery of CNTs in 1991[1] was very much owing to high resolution electron microscopy (HRTEM) which I have been engaging in from its early development[2]. In this connection I would like to present the most recent achievement in HRTEM that has been realized at an atom resolution level by Energy dispersive X-ray spectrometry (EDS). Such a new technology should be extremely important for nanoscience and nanotechnology. 
The carbon nanotubes brought us dual excitements in both academia as condensed matter physics and industrial applications. Such a broad range of the attraction is reflected in an extremely high Google citation, its number becoming over 47,000 only for the first paper reporting CNT in 1991. The number is still increasing even after 27 years of the discovery. I would like to introduce some my own effort in attempt of CNT device applications.
CNT, chrysotile asbestos, imogolite [3], and many structures in biological systems are known to have tubular structures, resulting from anisotropic growth in one particular orientation. In the case of CNT, the presence of catalytic metal particles in the tubule formation appears to control a tubular morphology. We have recently examined aluminum oxy-hydroxide gamma-AlOOH, boehmite, which has been known to form into a variety of morphologies from a fibril, low-dimensional sheet, platelets, to bulk crystal, depending on a synthesis process. One of them is a quasi-one-dimensional fibril structure, which grows in an aqueous solution as a sol form. We have studied detailed morphology of this fibril boehmite and found that the fibril grows selectively parallel to the c-axis and does not form in a tubular structure but a nanometer-sized ribbon [4]. Electronic energy band gaps of such a ribbon have been studied and showed interesting size-dependent band gaps [5]. The growth was not promoted by a particular catalytic substance so that such an anisotropic growth should be originated from the boehmite structure itself and surroundings.

1)S. Iijima, Nature, 345, 56-58 (1991).
2)S. Iijima, J. Appl. Phys., 42, 5891-5893 (1971).
3)K. Wada et al., Amer. Mineral., 54, 50 (1969).
4)S. Iijima et al., PNAS, 113, 11759-11764 (2016).
5)M. Toyoda & S. Saito, private communication 2018.

关于主办方

联系我们
400-110-3655   

E-mail: meeting@c-gia.cn   meeting01@c-gia.cn

参展电话:13646399362(苏老师)

主讲申请:19991951101(王老师)

官方微信订阅号
Copyright © 中国国际石墨烯创新大会 版权所有     运营机构:北京现代华清材料科技发展有限责任公司
grapchina.org 京ICP备10026874号-12   grapchina.cn 京ICP备10026874号-23
京公网安备 11010802023402号
分享到:
凯发_饭岛澄男(Sumio Iijima)

凯发

演讲嘉宾-饭岛澄男(Sumio Iijima)

饭岛澄男(Sumio Iijima)
日本名古屋名城大学教授,日本学士院院士,中国科学院外籍院士
  日本国籍,纳米科学家。1939年5月出生于日本,1968年获得日本东北大学博士学位。2010年当选为日本学士院院士。2011年当选为中国科学院外籍院士。 
  饭岛澄男是高分辨电子显微学的奠基人之一;他在1991年在《自然》杂志上宣布观察到纳米碳管,由此开拓出一维纳米材料的全新研究领域,为推动纳米科技的发展作出巨大贡献,该论文单篇已被引用一万多次,居于该领域之首。 1971年,他将铌酸钛的电子显微像和其晶体结构结合起来,显示出高分辨像中一个像点对应着重金属原子柱。人们直接看到原子的美好愿望终于实现了。一门新兴的高分辨电子显微学科也因此而诞生。高分辨电子显微学的兴起不仅给固体物理、固态化学、电子学、材料学及地质矿物等物质科学带来新的活力,也为生命科学中至关重要的生物大分子结构的研究起极大的推动作用。1991年,他用电弧法制备的碳材料中观察到纳米碳管。它是由碳原子形成的石墨片层卷成的无缝、中空管体。饭岛澄男用电子显微像和电子衍射表征了纳米碳管的直径、壁层以及螺旋性,从而确定了碳物质的这一新品种。他接着在纳米碳管制备技术;打开纳米碳管封闭端头而对之实施管内充填的技术;纳米碳管的物理化学性能;其他一些物质的纳米管和纳米线都作了系统深入的研究。纳米碳管具有奇特的电学性能,被认为是纳电子学的重要候选材料;纳米碳管还有优良的发射电子、发光特性;高比强的力学性能和很好的化学吸附性及充填可能。所以纳米碳管的研究已经成为纳米科学技术的重要方向,也是凝聚物理和材料科学领域的前沿和热点。饭岛澄男的开创性工作和一直以来的活跃研究奠定了他在纳米科技方面的引领地位。饭岛澄男是中国人民的好朋友,对推动中国纳米科技、电子显微学的发展做出了重要贡献。他是文革之后最早访问中国的日本科学家之一。他在美国期间,热情指导和帮助了中国访问学者。返回日本后,与清华,北大等多个研究组合作研究和培养研究生,发表高质量研究成果。所指导中国学生已有多名成为学术带头人。他是清华大学,北京大学,西安交通大学,浙江大学的名誉教授和上海交通大学,东南大学的讲座教授。他还是中国科学院金属研究所沈阳材料科学(联合)国家实验室的国际咨询委员会的委员。
演讲题目:One-Dimensional Materials: Growth, Characterization and Use
主题会场大会报告
开始时间
结束时间
内容摘要

The discovery of CNTs in 1991[1] was very much owing to high resolution electron microscopy (HRTEM) which I have been engaging in from its early development[2]. In this connection I would like to present the most recent achievement in HRTEM that has been realized at an atom resolution level by Energy dispersive X-ray spectrometry (EDS). Such a new technology should be extremely important for nanoscience and nanotechnology. 
The carbon nanotubes brought us dual excitements in both academia as condensed matter physics and industrial applications. Such a broad range of the attraction is reflected in an extremely high Google citation, its number becoming over 47,000 only for the first paper reporting CNT in 1991. The number is still increasing even after 27 years of the discovery. I would like to introduce some my own effort in attempt of CNT device applications.
CNT, chrysotile asbestos, imogolite [3], and many structures in biological systems are known to have tubular structures, resulting from anisotropic growth in one particular orientation. In the case of CNT, the presence of catalytic metal particles in the tubule formation appears to control a tubular morphology. We have recently examined aluminum oxy-hydroxide gamma-AlOOH, boehmite, which has been known to form into a variety of morphologies from a fibril, low-dimensional sheet, platelets, to bulk crystal, depending on a synthesis process. One of them is a quasi-one-dimensional fibril structure, which grows in an aqueous solution as a sol form. We have studied detailed morphology of this fibril boehmite and found that the fibril grows selectively parallel to the c-axis and does not form in a tubular structure but a nanometer-sized ribbon [4]. Electronic energy band gaps of such a ribbon have been studied and showed interesting size-dependent band gaps [5]. The growth was not promoted by a particular catalytic substance so that such an anisotropic growth should be originated from the boehmite structure itself and surroundings.

1)S. Iijima, Nature, 345, 56-58 (1991).
2)S. Iijima, J. Appl. Phys., 42, 5891-5893 (1971).
3)K. Wada et al., Amer. Mineral., 54, 50 (1969).
4)S. Iijima et al., PNAS, 113, 11759-11764 (2016).
5)M. Toyoda & S. Saito, private communication 2018.

关于主办方

联系我们
400-110-3655   

E-mail: meeting@c-gia.cn   meeting01@c-gia.cn

参展电话:13646399362(苏老师)

主讲申请:19991951101(王老师)

官方微信订阅号
Copyright © 中国国际石墨烯创新大会 版权所有     运营机构:北京现代华清材料科技发展有限责任公司
grapchina.org 京ICP备10026874号-12   grapchina.cn 京ICP备10026874号-23
京公网安备 11010802023402号
分享到: